
Detecting GPS Information Leakage in Android
Applications

Siyuan Ma∗ ‡, Zhushou Tang∗, Qiuyu Xiao∗, Jiafa Liu∗, Tran Triet Duong∗, Xiaodong Lin†, Haojin Zhu∗ ‡
∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

{Masiyuan, pLL, xiaoqiuyu, 10421381150021, neito, zhu-hj}@sjtu.edu.cn
†University of Ontario Institute of Technology, Canada

†xiaodong.lin@uoit.ca
‡Key Lab of Information Network Security, Ministry of Public Security

-
Abstract—Location Based Service(LBS) becomes very popular

in mobile computing platforms, such as Android. However, it
could also leak highly personal information about the phone
owner if used by Malwares. It has been witnessed that an
increased number of malicious Android applications use LBS to
obtain users’ locations and transmit them to attackers without
users’ acknowledgement, causing users’ privacy breach.

In this paper, we first discuss the common way in which
privacy can be breached in Android applications, and then
define a classification algorithm for GPS information leakage.
Furthermore, we develop a location information leakage detection
tool named Brox. Brox is based on dalvik-opcode specification,
which uses data flow analysis framework equipped with flow-
sensitive, context-sensitive, and inter-procedure techniques to
detect potential information leakage path in Android malicious
applications. Specifically, Brox uses inter-procedure analysis and
dependency calculation to understand the intention for each
sensitive operation; by using reachable analysis, connection
between privacy access operation and leakage operation is es-
tablished. More importantly, Brox confirms whether the sending
out operation contains location information or not using static
taint analysis. At last, we classify the detection results with the
help of identification of interaction and non-user interaction entry
points in order to discover stealthy leaks of GPS location. The
extensive experiments results show that the proposed method can
effectively detect privacy leakage in Android applications with a
high accuracy rate.

I. INTRODUCTION

In the recent years, we are witnessing the skyrocketing
popularity of smart-phones. According to data released by
IDC, 207.6 million Android and Apple smartphones were
shipped in the fourth quarter of 2012, which is up 70.2 percent
from 122 million units in the same period in 2011. Among
various computing mobile platforms, Android has the highest
market share of any smartphone operating system in the world.
This has been demonstrated by IDC reports that, Android had a
70.1 percent share of the market, with iOS at 21 percent in the
fourth quarter of 2012. This trend is further propelled with the
wide availability of feature-rich Android applications that can
be downloaded from Android Market and run on smartphones.

Even though Google manages its own application market,
Google Play, to get auditing for vendor-provided programs,
there exist a huge number of third-party apps in numerous
marketplaces. According to Androlib [1], it is estimated that
there are more than 650,000 Android Apps until March 1st,
2013 [2]. Different from iOS market policy, in which each
application should be reviewed before its publications [3],

most Android markets allow the publications of Android Apps
without reviewing process. This policy has been criticized
since it may make users take the risks of running malicious
apps. Further, even apps from Google play are not safe at all
[4].

Location privacy is receiving an increasing attention re-
cently due to the popularity of smartphones and ubiquitous
location based services (LBS) [5]. According to the report
of the Federal Trade Commission (FTC), Mobile Privacy
Disclosures: Building Trust Through Transparency, real-time
geolocation data of mobile users could be used to build
detailed profiles of consumer movements over time and in
ways not anticipated by consumers. Even though FTC has
suggested companies consider offering a Do Not Track (DNT)
mechanism for smartphone users, prevention of location data
leaking still represents a challenge in practice due to the
existence of malicious apps. A good example is a recently
discovered malicious app, Secret Tracking [6], which obtains
user’s location information from GPS and then sends the
information via SMS in a secret way. Such an abuse of location
data will make mobile user suffer from serious location privacy
leaking.

To address this problem, C. Gibler presented AndroidLeaks
[7], an automatic tool for detecting potential privacy leaks
on Android system. AndroidLeaks successfully applies the
existing analysis framework on java to the android applications
by translating them into a Java Archive (JAR) file. However,
the translation from Android application to jar is not always
correct. This incorrect translation could lead to an incorrect
analysis result. M. Grace also presented a scalable and accurate
zero-day android malware detection framework, RiskRanger,
based on filtering applications from their behaviours [8]. But,
its results may be inaccurate because it only uses the reachable
analysis without taking the taint analysis into consideration.
Therefore, more research efforts are necessary toward a more
complete and accurate malicious application identification.

Different from other information leaking problems like SMS
content leaking, acquiring the location information is a com-
mon behaviour for legal applications. Existing research shows
that 27 of 50 most widely used advertisement libraries need
to acquire users’ location information to display advertisement
based on their position [9]. The main challenge of this issue is
how to differentiate dangerous behaviours from the legal ones.
We analyzed Geinimi [10], a popular malware in android.
It is an application that collects users’ sensitive data (e.g.,

Globecom 2013 - Communication and Information System Security Symposium

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 826

location information, phone number and etc), and sends it
to the remote server through background services. Based on
this analysis, we proposed a classification method to identify
malicious-like behaviours (or sinks) by the trigger condition
and the privacy leaking sources (the malicious behaviour
holding privacy information).

To address this issue, we develop Brox, a static privacy
leak detection framework for Android application. Inspired by
WALA [11] which provides static analysis capabilities for Java
bytecode, JavaScript and related languages, Brox inherits its
correctness and effectiveness by using inter-procedure analysis
framework. Under this framework, we can handle the informa-
tion passed from one procedure to another, then establish the
connection between the privacy-getting action and the privacy-
sending action. What’s more, our framework can distinguish
different actions triggered by users with the proposed classi-
fication mechanism. Compared with the previous works, our
framework is “smarter” on deciding which sensitive code can
be executed and thus could give a more accurate report with
information flow between the procedures.

Our contributions in this paper are summarized as follows:
1) We present Brox, a static analysis framework aiming

at detecting Privacy leaks in Android application. The
proposed Brox analysis framework, which uses flow-
sensitive, context-sensitive, inter-procedure technique
for taint analysis, can produce more accurate results.

2) We introduce a classification mechanism aiming at
evaluating the risk of potential privacy leaking action.
This classification mechanism can speed up the manual
confirmation process during the analysis.

The following sections are organized as follows. Section III
introduces the Brox inter-procedure static analysis framework
and our identification method to detect the potential risky loca-
tion information request. Section IV shows the completeness
and soundness of Brox and the correctness of our identification
method.

II. CLASSIFICATION OF LOCATION PRIVACY LEAKING AND
ATTACK MODEL

In this section, we propose a classification method of apps
which are suspected of collecting user’s location information
and then we introduce our attack model.

A. Classification Method
There are many applications which need to get and use

the users’ GPS information. Some of them are many mali-
cious applications within varying degrees of mal-behaviors.
By researching the privacy leaking behavior, we found that
malicious application generally acquire the user’s private in-
formation at first and then sent it through SMS or network.
To have a better understanding of these applications and make
accurate judgment on them, we need to classify the malicious
application into several types.

As shown in table I, we first consider the behavior col-
lecting and sending the user’s private information without
authorization as privacy leaking behavior. After confirming
such a behavior of a certain application, we further evaluate
these applications in two dimensions: the leaking contents and
the triggering condition of malicious behavior.

Request only loca-
tion information

Request extra infor-
mation

Send Information
via network

low risk high risk

Send Information
via SMS

high risk low risk

TABLE I
CLASSIFICATION DIAGRAM

According to the leaking contents we can divide the privacy
leak behavior into two types.

1) The behavior which only leaks the GPS information of
the devices.

2) The behavior which leaks not only the GPS information
but also other private information such as IMEI and
phone numbers.

We define the leaks only containing GPS information as
low-level-risk behavior and the leaks containing more private
information as high-level-risk behavior. GPS information alone
may not compromise users much since others do not know
who is using the device. But if other private information like
SMS message or IMEI were leaked out, the attacker can trace
the user’s identity according to these information. Once user’s
personal information and GPS information were known by the
attacker, users can be easily attacked.

According to the triggering condition of the leaking behav-
ior we divide the privacy leaking behavior into three types.

1) The behavior triggered by user interaction with the
application.

2) The behavior triggered automatically by background
services.

3) The behavior triggered automatically by background
services and user interaction.

The first type of behavior is triggering the leaking behavior
while the user is interacting with the application. In this
case, the application must be at runtime and the user must
take some specific actions if the leaking behavior want to be
triggered. The second one is triggering the leaking behavior
automatically by the background services registered by the
malicious application. By using the background services, even
if the application is terminated, the private information can still
be collected. Besides, the background services can collect the
updating private information consistently. In this way, even if
the user’s GPS information changes frequently, the attacker
can still get the accurate location information of the user. The
third type of leak can be triggered by both background services
and user interactions. In this case, the benign application
got authorization from the user. It can continually send the
user’s location without further permission. After considering
the three types of privacy leaking behavior, We think the risk
of leak triggered by background services only is superior to
others.

B. privacy leak model
We have manually analyzed android malicious applications

and noticed that most malicious applications’ risky behaviour
focus on collecting and sending the users’ private information.
FakeFlash, an Android Malware in the disguise of an Abode
flash player, collects user’s phone number and phone’s IMEI
information and then send these information by posting data

Globecom 2013 - Communication and Information System Security Symposium

827

to remote server. So a complete path from getting privacy to
sending privacy should be included in a complete attack model.

Fig. 1. A abstraction of privacy attack model

Like figure 1, we define the following specific behaviours
as the potential privacy leaks of Android application.

1) Collect user’s private information using android frame-
work API.

2) Transform private information into another form.
3) Send the transformed information to remote phone or

remote server.
In the attack model, we define Entry as the triggering

action which leads to privacy leak, Sources as the action
which collects sensitive information, Sinks as Privacy sending
action. A path connecting a source and a sink is regarded as
a Confirmed path.

III. SYSTEM DESIGN

Fig. 2. The Architecture and Workflow of Brox

There are two challenges need to be addressed in the
considered problem. The first one is how to build the call
graph and get the API parameter. The second one is how to
identify the trigger events of a privacy leaking action.

For the first challenge, we use Brox for static analysis.
Since the re-compiled code is not reliable, Brox uses dalvik-
opcode specification to get more accurate results. Brox is
designed based on inter-procedure technique which solves the
first challenge.

For the second challenge, in our design, we predefine a
series of policies to identify the entry point of Android and

then perform taint analysis. We report the existing requesting
path of location information with the entry points. With few
efforts on manual examination, we can determine whether this
location information request is legitimate or not.

Figure 2 shows an overview of our approach. For android
applications, Brox extracts it to pseudo-code by using Dedexer.
The jasmin-syntax style pseudo-code generated by Dedexer
is identical to the bytecode for Android virtual machine.
Performing analysis on the android pseudo-code ensures the
accuracy of taint analysis.

A. Building the call graph and getting the parameter

To solve the first challenge, we need to build the call graph
and get the parameter. For the call graph, we have two steps.
Specifically, the first step is to generate the control flow graph
(CFG). The second step is to complete the call graphs based
on the CFG.

1) Call graph Generation: CFG presents the program
execution intra-procedure. In CFG, each node is Three Address
Code (TAC) of original instruction and the edge represents the
control flow of the instruction. In some cases, we need to take
the special steps to transfer the jasmin-style code to TAC. For
example, “sparse-switch” is translated to “if-eql” instruction.

1
2 new−i n s t a n c e v0 , j a v a / l a n g / Thread
3 new−i n s t a n c e v1 , l l / ap / ken / L lApKenAct iv i ty$1
4 invoke−d i r e c t {v1 , v2} , l l / ap / ken / L lApKenAct iv i ty$1/< i n i t> ; <

i n i t >(L l l / ap / ken / L lApKenAc t iv i ty ;) V
5 invoke−d i r e c t {v0 , v1} , j a v a / l a n g / Thread/< i n i t> ; <i n i t >(L java / l a n g /

Runnable ;) V
6 invoke−v i r t u a l {v0} , j a v a / l a n g / Thread / s t a r t ; s t a r t ()V

Listing 1. A method to start a thread

For inter-procedure, a basic call graph is built on the
combination of comments issued by Dedexer and the result of
Class hierarchy analysis. To complete the call graph, we apply
type inference and const string propagation to get the real class
name and method name of the callee. Listing 1 is pseudo-code
to start a thread extracted from malware Loozfon [12]. To solve
the target of the forked method, type inference is enough.
For example, at line 2, type “ll/ap/ken/LlApKenActivity$1”
is generated (all generate/kill/assign is used in the transfer
function for type inference), and at line 5, we assign the type
v1 to v0. At back patching stage where the refined call graph
is made, when we get instruction as line 6 presented, a query
for the type of v0 is sent to the related element residing in
abstract domain (semi-lattice), and then we get all possible
types (classes) of the callee for this point.

2) Getting the parameter: We use const string propagation
to get the parameter of the sensitive operation. For example,
getLastKnownLocation is the location related API which re-
turns the location information from GPS when called with
parameter LocationManager.GPS PROVIDER. Similar to type
inference, we define LocationManager.GPS PROVIDER as
const string, and transfer function for const string propagation
logs the generate/kill/assignment of the const string. And when
Brox encounters getLastKnownLocation related operations at
dalvik-opcode level, we query the string information in ab-
stract domain for const string propagation and thus obtain the
real intent of the API.

Globecom 2013 - Communication and Information System Security Symposium

828

B. Identifying the triggered events

To deal with the second challenge, Brox extracts the classes
and methods defined by the authors and recognizes the entry
point based on its super class and method name. For example,
when the pre-processor encounters a method whose super class
is Android.app.Activity and method name is onCreate, it will
be marked as an entry of the function. Because when the
android framework starts the application, this method will be
called to initialize the component of this activity. We consider
the overloaded method of Activity, Service, BroadcastReceiver
and Listener as the entry point of an application.

The results of the analysis can show the dependency among
the variables. To confirm certain parameter in API which holds
the sensitive information, we proceed backward slicing until
we hit a sensitive operation. The result of backward slicing is
also a representation of the taint flow graph. Therefore, Brox
has the ability to analyze the transformation and propagation
of the privacy information. It traverses the CFG to search
the sending action (sink) by exploiting the deep-first search
algorithm. Then Brox tests whether the action is reachable
from certain entry points. After that, Brox builds a dependency
graph for each parameter related to the sending action. With
the help of built-in API summary, Brox proceeds backward
slicing. Then we check the leaf of the slicing results. By
checking the information of the dependency, Brox reports a
confirmed path if it finds that the data is obtained from the
source.

Brox has the ability to detect the privacy leaking behaviours
in android applications. However, legal applications may also
request the location information such as Google map. To
distinguish these legitimate applications from the malicious
ones, we propose a classification mechanism.

1) Information Sources: There are several different ways
to retrieve information through Android API. Therefore, there
are different types of source information.

1) Location information. The LocationManager in Android
provides a series of methods to deal with location
information. Once an application got a LocationManager
ojbect, the application can handle the location infor-
mation by one of the following three methods. First,
it can query the list of all LocationProviders for the
last known user location. The second approach is that
it could register/unregister for periodic updates of the
user’s current location from a location provider. The last
approach is to register/unregister for a given Intent to
be fired if the device comes within a given proximity
(specified by radius in meters) of a given lat/long.

2) Device information. Each smartphone has some unique
identifiers, such as IMEI , which is unique for each
GSM based on mobile phone and IMSI, which is
unique for each subscriber of GSM services. Through
TelephonyManager, we can obtain all these identifiers.
The class TelephonyManager mainly provides access to
information about telephony services for the device. Ap-
plications can use the methods in this class to determine
telephony services and states.

3) Contact information. Android smart phones are used for
personal information management and therefore storing

Application Name Found Possible
Privacy Leak

Found
Confirmed
Privacy Leak

Plankton ◦
Geinimi ◦
Mobile Spy ◦
MobileMonitor ◦
spyera ◦
MobileTX ◦
FakeFlash ◦
Spybubble ◦
iits sypoo ◦
Boxer

TABLE II
ANALYZE REPORT

addresses and phone numbers. In the Android SDK, the
phone numbers can be accessed by TelephonyManager.

C. Information leak Sinks
Once the private information is stored in some variables of

an Android application, there are several ways to send them to
the outside world. The following are some sinks we consider
in our work.

1) SMS. Application can send information to other phones
or organizations by using the smsManager object.
Method getDefault() can pack the private information
in the message. The message can be sent to the destina-
tion by the sendTextMessage() and the sendMultipart-
TextMessage() method.

2) Network. The application can also access the internet
through the class socket. The method Socket(String
dstName, int dstPort) creates a new streaming socket
which is connected to the target host after setting the
parameters dstName and dstPort. The dstName is the IP
address of the server and the dstPort is the port number
of the server.

Using attack model discussed above, we specify the entry,
source, sink and their relationship in the configuration file.
According to the specification, Brox can address the specific
problem and get the corresponding results.

IV. EXPERIMENT AND EVALUATION

To verify effectiveness and efficiency of Brox, we examine
our method by comparing the results of Brox with the existing
approaches to GPS information leakage analysis. By analyzing
the action mode of Android applications, we examine the
classification method described in the previous section. The
analyzer reads the suspicious application, and runs Brox on
each entry point. It then analyzes the results and classifies
them. The experiment was implemented on a Personal Com-
puter with Core i5 Processor and 2G RAM running Windows
8 professional Operating System. We collect the malware
samples from contagio mobile blog [13]. Additionally, we also
collect some monitor applications in the report [14]. All test
cases and test results can be found at our website [15].

TABLE II shows that Brox can detect most of malicious
actions of Android applications, and is able to generate an
elaborate report of privacy leaks in Android applications.
Let us take geinimi as an example, a malicious application
that collects user’s information in the background and sends
them via sms. Brox is able to detect most of the geinimi’s

Globecom 2013 - Communication and Information System Security Symposium

829

variants collected from contagio mobile [10]. Moreover, by
using apktool, a repacking tool for Android, we further migrate
GeiNiMi virus into a clean Android application and make
some obscurity on the library. Our experiments show that Brox
can still detect location information leakage by the geinimi
virus. Figure 3 is the analysis results automatically generated

Fig. 3. The Analysis Result of Mobile Spy Generated by Brox

Fig. 4. The Entry Point Graph Generated by Brox

by Brox for Mobile Spy which is reported as a application with
confirmed privacy leak in table II. The node surrounded by two
lines stands for the sending action. The picture shows that the
application sends the privacy information via sendTextMessage
API. The variable label represents data dependency. For
example, the first node with label “v1” indicates that the
sending information is stored in the ”v1” register, and the edge
linked to ”v1” stands for that the ”v1” register depends on the

Application
Name

Entry Point Collect Information

GeiNiMi onLocationChanged
(registered in
background thread)

User’s IMEI code and
Location

MobileMonitor onLocationChanged
(registered in a
Broadcast Recevier)

User’s IMSE code and
Location

SpyEra onCreate (from a back-
ground service)

User’s Phone Device

Spybubble onLoactionChanged
(registered in a
background service)

User’ s phone number,
IMSE code and Loca-
tion

TABLE III
THE BEHAVIOUR OF SOME MALICIOUS APPLICATION

parameter of ”sendSMS”. Thus, we can determine the data
dependency among variables. The node colored with pink is
the source of privacy leak. Obviously, a confirmed path exits in
this application. Therefore, we can conclude that the malware
acquires the user’s location information by using getLatitude
and getLongitude API. The entry point of this privacy leak is
shown in figure 4. The source of this malicious application is
in LocationListener, and a listener notifies the program when
it detects the change of location. This malicious behaviour
is triggered without user’s interaction. Using the information
above, we know that Brox detects a privacy leak since the
malware sends user’s location information through SMS. Ac-
cording to the previous definition, this privacy leak can be
considered as a risky behaviour. After obtaining the analysis
result, we further apply our classification method proposed in
Section II-A. We collect the confirmed privacy paths of two
applications, Geinimi and MobileMonitor, and then analyze
the results. Brox also reports unconfirmed privacy leak paths
of SpyEra and SpyBubble. We then manually analyze these
applications to determine what type of sensitive information
(or privacy) they collect and how they collect them. From
TABLE III, we can know that most location information leaks
are related to the function onLocationChanged. According to
the Android Document [16], the onLocationChanged method
is called when the user gets a new location. Moreover, the
LocationListener, the class of onLocationChanged method is
registered in a background thread or service. We can conclude
that the sending behaviour is completed on the background
without user’s interaction. Regarding the information collected
by the application, most malicious applications collect the
user’s IMEI and IMSI code. Moreover, Spybubble also collects
the user’s phone number which is generally considered as a
more secret information. The general characteristic of these
information is that the attacker is able to identify the phone’s
owner. By combining the location information with identity
information, the malicious application can trace the precise
position of any person. our experiments show that the proposed
classification mechanism can successfully identify the risky
behaviour of malicious applications.

A. Concurrency Problem

According to TABLE II, we found that Brox framework
reports 9 possible privacy leak out of 10 samples, however,
Brox only report 4 confirmed privacy leak out of them.
After manually inspecting these programs, the privacy leak
path can be demonstrated in Fig. 5. Let us take an example

Globecom 2013 - Communication and Information System Security Symposium

830

Fig. 5. The Concurrency Problem
of Spybubble, a monitor Malware. It gathers user’s location
information in the background using the getLongitude and
getLatitude API. It then packages the position information into
a string in XML format and stores the string into a global
variable. Another method sends this variable to the internet as
soon as the remote server is active and can be reached. By
using this method, the Malware can handle the situation that
the user’s phone cannot access the internet. This new type of
privacy leak action bring a challenge to our analysis framework
since static analysis can not simulate the time sequence of
an application. Since the sending method and the collecting
method belong to different threads, our framework will be
confused by this. The proposed solution cannot figure out
which thread changes the variable and let this variable contain
user’s privacy information. To analyze this type of application,
we have to identify the concurrency of each entry point and
detect the semaphore and mutex between two threads. A
method of performing the inter-procedure dataflow analysis
on the concurrency application is proposed by the Amir Kamil
and Katherine Yelick. It is an efficient analysis technique to
identify the race condition and the concurrent parts inside a
program. However, in Android, this method is too slow to
apply it on our framework. Like QQ, a popular IM program
in China, has 1556 entry points and each entry point can be
considered as a thread. If we identify the concurrent problem
between each pair of entry position, we have to analyze nearly
1.2 million pairs, which will cost too much time and make it
impractical in Android. We are trying to find a new algorithm
that analyzes the concurrency problem in large scale.

V. FUTURE WORK & CONCLUSION

In the section IV, we proposed the requirement of a new
method to analyze the concurrency problem specially on
android analysis. The experiment result shows that the android
malware developers prefer to write the malicious application
with more complex data structure model and more complicated
logic. That requires the analyzer increase the ability that
handle such method. According to a recent report, the android
malware is using more techniques to avoid the detection,
include dynamic code loading, encryption and native code
exploit. The RiskRanker[8] considered these behaviour as a
dangerous behaviour. But we can using the dataflow analysis
to analyze the dynamic jar just as the code inside the android
application. The progress of this aspect results in a more
intelligent and accurate analysis framework that can handle
the most complicated malware.

In this paper, we have presented an inter-procedure dataflow
analysis framework to analyze the location privacy leaks
inside the android application. And for the special attribute of
location privacy leaks, we proposed a classification mechanism
based on the trigger event and the information collected by the
application. During the experiment period, our framework can
successfully detect most of privacy leaks inside the program.
However, the concurrency of application become an obstacle
of our analysis. In future, we will propose two methods to
improve the efficiency and accuracy of the analysis.

VI. ACKNOWLEDGEMENT

This research is supported by National Natural Sci-
ence Foundation of China (Grant No.61003218, 70971086,
61272444, 61161140320, 61033014), Doctoral Fund of Min-
istry of Education of China (Grant No.20100073120065), and
Opening Project of Key Lab of Information Network Security
of Ministry of Public Security (The Third Research Institute
of Ministry of Public Security).This work is also partially
supported by Key Lab of Information Network Security,
Ministry of Public Security.

REFERENCES

[1] Androlib, “Accumulated number of application and games in the android
market,” http://www.androlib.com/appstats.aspx.

[2] “400,000 apps now available in android market,” 2 2012,
http://www.theverge.com/2012/1/4/2681360/android-market-400000-
app-available.

[3] Butler, “Android: Changing the mobile landscape,” Pervasive Comput-
ing, IEEE, 3 2011.

[4] “Malware from google play,” http://news.cnet.com/8301-1009 3-
57470729-83/malware-went-undiscovered-for-weeks-on-google-play/.

[5] LBS report, “Three-quarters of smartphone owners use
location-based services,” PewInternet, Tech. Rep., 5 2012,
http://pewinternet.org/Reports/2012/Location-based-services.aspx.

[6] Tecent, “Tecent found a malicious application call ”secret tracking”,” 2
2012, http://news.zol.com.cn/276/2764269.html.

[7] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: auto-
matically detecting potential privacy leaks in android applications on a
large scale,” Trust and Trustworthy Computing, pp. 291–307, 2012.

[8] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scal-
able and accurate zero-day android malware detection,” in Proceedings
of the 10th international conference on Mobile systems, applications,
and services. ACM, 2012, pp. 281–294.

[9] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile
Networks. ACM, 2012, pp. 101–112.

[10] f secure, “Mobile threat report q4 2012,” 2012, http://www.f-
secure.com/static/doc/labs global/Research/Mobile Threat Report Q4
02012.pdf.

[11] T. Watson, “T.j. watson libraries for analysis,”
http://wala.sourceforge.net/wiki/index.php/Main Page.

[12] virustotal, “Loozfon info,” https://www.virustotal.com/en/file/ec0e0d25
aa1de4f38894fb1999d6f21535610ffba15423a02ec993fea1561c66/analy
sis/.

[13] contagio Mobile, “contagio mobile,” contagiominidump.blogspot.com.
[14] f secure, “Mobile threat report q2 2012,” 2012.
[15] M. A. I. Team, “Brox,” http://www.mobile-app-

insight.org/Publications/Publications.htm.
[16] Google, “Android document,” http://developer.android.com.

Globecom 2013 - Communication and Information System Security Symposium

831

